농생명소재산업화기술개발사업

1. 배경 및 필요성

П	세계는	농생	명지	l 워소재	선점을	위하	신기를	늘 전쟁	를 됐
	, , , , , , , , , , , , , , , , , , , 					'' -			

- 미, 일, EU 등 선진국들은 생명자원 R&D 국가전략을 수립하여 생명 자원소재 개발을 국가최우선기술개발과제의 하나로 추진
 - ※ 향후 바이오기술은 농업(4% ⇨ 36%)과 산업(2% ⇨ 39%) 분야가 75% 이상의 경제적 기여를 할 것으로 예상(OECD, 2009)
- 생명자원 활용 세계 시장 규모는 2003년 약 8천억 달러에서 2010년 약 2조 5천억 달러 수준으로 계속해서 증가하고 있음
- □ "석유화학소재에서 농생명자원소재로의 패러다임 변화"로 생명자원 활용·개발하는 능력이 국가경쟁력 좌우
- 재생가능한 식물자원을 연료로 하여 생물학적·화학적 전환 과정을 통한 신개념 바이오 산업은 각 국가 및 기업별 미래 성장동력임
- □ 건강한 삶에 대한 관심 급증으로 안전하고 건강한 식품에 대한 수요가 높아지고 있음
- 건강에 대한 관심이 높아지면서, 식품 산업에서 사용되는 화학 색소, 향료,
 보존제, 안정제, 유화제 등의 천연 소재로의 대체가 필요
- □ 농업을 식량생산에서 벗어나 농생명소재 산업의 가치 사슬로 발전시키기 위한 국가 차원의 농생명소재 R&D 투자 확대 필요
- 향후 10년은 세계 생명자원소재 산업의 지형 구축기로 우리나라 농생명소재 산업의 성패를 결정하는 중요한 시기

□ 추진경위

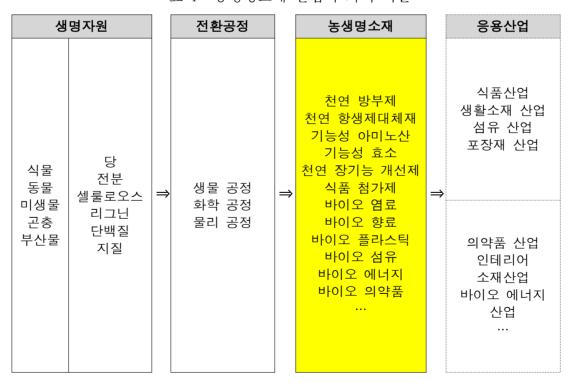
- 농업 분야 생명자원 관련 활용 산업화 방안 추진(`10.1.~)
- 생명자원 분야 예비타당성 대상 사업 기획 후보도출 작업 추진(`10.4.)

□ 1차 예비타당성 기획(`10.3~`10.8)

- 생명산업 육성을 위한 '생명자원 활용 신소재 기술개발 사업(안)' 사전 기획 추진(`10.6.~)
 - 생명자원 관련 기존 우수연구사업(농업 분야 프론티어사업 등) 연계 방안을 고려한 사업 기획(안) 도출
 - · 생물, 작물, 자생식물을 중심으로 미생물자원, 식물자원, 동물자원, 곤충자원에 대한 중점 추진 전략 및 기술 도출
- '생명자원소재 산업화 기술개발사업' 사전기획보고서 작성(`10.8.)

□ 예비타당성 수행을 위한 상세기획(10.10. ~ 11.7.)

- '생명자원소재 산업화 기술개발사업' 예타 대응을 위한 상세기획연구
 - 1·2차 전문가 기획회의 추진
 - 미래 유망 핵심소재후보 아이템 수요조사
 - 미래 유망 핵심소재 도출(220개 소재 중 최종 10대 소재 발굴)
 - 생명자원소재 활용을 통한 산물을 중심으로 하는 추진 전략 및 기술 도출
- 농림수산식품 R&D 신규사업 기획 공청회 개최 '생명자원소재 산업화 기술개발 사업'('11.2.15)
- '생명자원소재 산업화 기술개발 사업'에서 '동생명소재 산업화 기술개발 사업'으로 사업명 변경 (`11.6 ~)


2. 현황 분석 및 전략적 선택

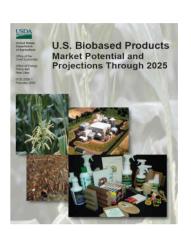
2.1 농생명소재 산업시장 및 기술발전 전망

□ 정의

- 농생명소재(Bio-based Materials)는 식물, 동물, 미생물, 곤충 등의 농생명 자원으로부터 얻어지는 천연 또는 바이오 소재
 - 대표소재: 바이오 섬유, 바이오 플라스틱(바이오폴리머), 바이오 용매, 식품 첨가제, 바이오 화학 소재, 바이오 의약품, 바이오 향료, 바이오 염료, 효소, 바이오 연료 등
- 농생명소재 산업 가치 사슬
 - 기존의 석유화학기반의 소재가 생명자원 기반으로 대체됨에 따라 바이오 기술력에 의해서 소재 산업의 판도가 변화

<표 1> 농생명소재 산업의 가치 사슬

□ 산업시장 전망


- 석유화학 기반에서 농생명자원 기반 소재로의 전환 가속화로, '20년 세계 화학소재 시장(2,500억 달러)의 20%를 농생명소재가 점유할 것으로 전망(맥킨지 보고서)
 - ※ 농생명소재 시장 규모: 전체 화학소재 시장 770억 달러의 7%(`05) → 1,250억 달러의 10%(`10) → 2,500억 달러의 20%(`20)
- (기능성식품 산업) 세계 기능성식품 시장 규모는 약 3,770억 달러('07)로,
 매년 10% 이상의 성장률을 보임
- (친환경 소재 산업) 친환경 농산물의 수요확대 기반을 통해 전체 농약 시장의 4.25%(`10)까지 확대, 연평균 9.9% 증가
- (효소 산업) 화학·의약·식품·사료 등 파급시장을 고려하지 않은 공급자 기준 효소자체 시장만으로도 약 45억 달러, 연평균 약 6~10%의 성장률을 보임(`07)
- (섬유 산업) 세계 시장 규모는 6,000억 달러('08)이며, 전통 섬유 산업에서 벗어나 탄소섬유, 나노섬유 및 복합소재 등을 개발하는 형태로 진화 중
- (바이오 플라스틱 산업) 바이오 플라스틱 시장은 71억 달러('07), '10년에는 물량으로는 214,000톤에 이를 전망¹⁾
- (향장품 산업) 세계 화장품 시장 규모는 약 2,696억 달러('06), 연평균 4%대의 성장률('02년 이후)을 보임

¹⁾ Biodegradable Polymers Market Report(David K. Platt, RAPRA), 2006

2.2 선진국 정책 동향

□ 미국

- 「바이오매스R&D촉진법(`00)」을 제정하고 바이오 매스산업을 신성장동력으로 개발 중(미 농무부・ 에너지부 주도)
 - National Biomass R&D Initiative ('01~)
- ○「바이오에너지 및 바이오제품 로드맵(`07)」을 수립하고, 원료 확보에서부터 보급·확산까지의 전주기 기술혁신시스템 구축 추진 중
 - 바이오연료 시장 점유율: 0.7%(`00) → 20%(`30)
 - 바이오기반제품 점유율: 12.8%(`00) → 55.3%(`30)

□ EU

- 바이오경제 전략계획을 수립하고 비식량 작물을 경쟁력 있게 생산하기 위한 계획을 추진
 - EU차원에서 지속가능화학기술로드맵(SusChem Technology Roadmap)을 작성하였고, Bio-based products 시장개발(`07)을 가속화하기 위한 계획 수립
 - 핀란드 국립기술연구소를 중심으로 바이오에너지와 화학물질을 동시 에 생산할 수 있는 기술개발 프로젝트를 착수

□ 일본

- 「바이오매스 일본종합전략('02)」을 수립하여 관련 법안을 정비하는 한편 생명자원소재 개발 및 실용화를 위한 다양한 시범사업을 추진 중
 - 사탕무, 옥수수, 소맥, 당밀, 식품부산물로부터 에탄올을 제조하는 실증 프로젝트를 다양하게 추진

2.3 우리의 전략적 선택

□ 사업추진의 기본 방향

- 미래유망 농생명자원 유래 신소재 분야 R&D 투자 강화
 - 농생명소재 R&D에 대한 정부의 지속적인 육성정책 필요
 - 농생명자원 유래 소재와 바이오공정이용 소재의 수요 급증
- 글로벌 수준의 농생명소재의 파일럿 시스템 확립
 - 기초·원천기술 연구부터 산업화까지 전주기적인 선순환 구조 마련
- 농생명소재의 전략적인 융복합 산업화 추진
 - 융복합 기술을 이용한 신산업 창출 및 글로벌 시장 선점을 위한 전략적인 지원 강화
 - · 지역적 특색과 주변 입지의 장점을 활용하여 아시아 생명공학 허브로 도약하기 위한 노력이 필요
 - · 국내 기술력 및 자원 부족 보완을 위한 선진국과의 공동 연구로 생명산업의 경쟁력 강화
- ㅇ 농생명소재의 수출 확대로 국가 산업 발전에 기여
 - 수입 의존도가 높은 생명자원소재 국산화 및 수출 확대를 통해 국가 신성장동력 산업으로 도약
- ㅇ 경쟁력 있는 글로벌 소재 기업 육성
 - 노보자임, Ciba, P&G 등의 다국적 기업이 선점하고 있는 소재분야 글로벌 시장 진입을 위해 혁신적이고 경쟁력 있는 소재기업 육성 시급
- 소재생산을 전문으로 하는 중소기업과 관·연·학 연구자들과 공동 협력 체제를 확립하여 사업화 지원

3. 사업의 주요내용

3.1 사업 개념 및 전략

□ 사업 개념

- (정의) 미래 유망 10대 농생명소재를 선정하여 국가전략적으로 집중 투자하는 성장동력개발 사업
 - 글로벌 시장 개척을 목표로 농생명소재 이용 산업을 육성하는 R&BD형 사업
 - 산·학·연 역량 결집을 통한 개방형 혁신 개념의 농생명자원 소재개발 사업
- (목적) 농생명소재산업화기술개발사업은 농생명자원을 활용한 고부가가치 소재를 개발하고 산업화를 통한 농생명소재 산업 육성을 목적으로 함
 - 미래 산업 환경 변화에 맞춘 농생명소재 이용 산업을 선점할 수 있는 신소재 및 농생명 기술 확보
 - 세계 시장 선점이 가능한 농생명소재 10개 이상 개발
- (사업 전략) 선택과 집중 + 개방형 혁신 + R&BD형
 - (선택과 집중의 전략적 투자 강화) 글로벌 농생명소재 산업을 육성하기 위해 '선택과 집중'의 원칙에 입각하여 미래유망 농생명소재를 선정하고 집중 투자
 - (개방형 혁신) 연구개발의 효율성을 높이기 위한 국내·외 우수한 R&D 자원과 아이디어 적극 활용
 - (R&BD형 추진) 기술개발 초기단계에서 비즈니스 개발 전략에 따라 기획 추진하는 사업
- (규모 및 기간) 총 5,982억 원(정부 4,636.5억+민간 1,345.5억)/총 10년
 - 기술의 빠른 변화에 대처하고 새로운 아이디어의 산업화를 위하여 사업 출범 후 5년간 신규 프로젝트 진입
 - 단계별 선정평가를 통하여 산업화 성공 가능성이 우수한 프로젝트에 집중 투자

□ 전략체계도

비 전

글로벌 농업생명소재산업 선도

목 표

세계시장 선점 가능한 10대 농생명소재 개발

중점 추진 내용

천연 천연 방부제 장기능 개선제

기능성

천연 5味 소재

천연 항생제 대체재

바이오 색소·염료·도료

바이오 섬유

식품소재

동물건강소재

생활소재

농산업소재

투 입

사업기간 '13년~'22년(10년) / 총 사업비 5,982억 원 프로젝트별 6년(1+3+2) 정부+민간(4,636.5+1,345.5억 원) 투입

3.2 10대 농생명소재

□ 중점 투자대상의 농생명소재 선정

- 10대 농생명소재를 선정하기 위하여 220개 소재 후보를 대상으로 전문가 자문 및 평가를 통하여 21대 소재군을 선별한 후 최종적으로 10대 소재로 압축
 - 1단계: 전문가 수요조사 및 선진국 소재 관련 R&D 로드맵 조사를 통하여 220개 투자후보 소재를 발굴 조사
 - 2단계: 220개 후보소재를 대상으로 글로벌 소재로 발전 가능성이 높은 소재 30개를 선정하고 이를 다시 그룹핑하여 21대 소재군으로 선별
 - 3단계: 21대 소재군을 대상으로 평가하고, 소재군별 유사성을 고려하여 10대 소재분야로 최종 선정함
 - 평가 사항 : 기술개발 추진가능성, 성장성, 경쟁가능성, 중복성, 농식품 산업 연관성

1단계(조사)	2단계(3단계(최종 선정(평가))	
220개 후보 소재	30대 소재	21대 소재	10대 소재
생명자원소재 투자후보 발굴조사	중점투자 1차 후보소재군 선발	중점투자 2차 후보소재군 선발	10대 농생명소재 선정
- 전문가 수요 조사 - 선진국 R&D 로드맵 분석 등	- 전문가 자문 및 인터뷰 - 유사 소재 분야 그룹핑	- 소재군별 RFP 작성 - 전문가 자문 - 유사소재 분야 그룹핑	- 기술개발 추진가능성, 성장성, 경쟁가능성, 중복성, 농식품산업 연관성 평가 - 농생명소재 분야별 포트폴리오 구축

[그림 1] 10대 농생명소재 발굴 및 선정 과정

□ 10대 농생명소재

구분	주요 내용	소재	관련산업	주요 소재기업
천연 방부제	유기합성 방부제 시장 대체 천연 방부제 소재 개발 - 식품 첨가 및 화장품 첨가물용 천연 방부제 개발 - 농작물 보존 및 항균·항진균·항산화용 천연 방부제 개발	생활소재	식품 산업, 향장품 산업, 생활용품 산업, 생물환경 산업, 목재 산업	썬라이더, Ciba, P&G, Biocide, Dow
천연 항생제 대체재	무독성(저독성)의 천연 항생제 대체재 개발 - 미생물(생균제) 항생제 대체재 - 약용식물(허브) 추출물 항생제 대체재 - 농산물 기공 부산물을 이용한 항생제 대체재	동물건강소재	생물 농산업	카길에그푸리나, ㈜CJ, ㈜미야리산제약, ㈜인트론바이오테크 놀로지
천연 5味 소재	천연 기능성 감미·조미료 소재 상용화 기술 개발 - 항당뇨·비만·충치 감미료 소재 생산 기술 확보 - 천연 고감미료(혼합 감미제) 확보	식품소재, 농산업소재	식품 산업	㈜CJ, ㈜대상, ㈜삼양사, 카길에그푸리나, 코카콜라
기능성 아미노산	등의 양균(양미년)양당묘(양지배 기능의 펩타이드 개발	동물건강소재, 농산업 소재, 생활소재, 식품소재	식품 산업, 향장품 산업, 의약품 산업	(주)CJ, 펩트론, (주)코스데이, ㈜샘표, ㈜바이오FD&C, ㈜케어젠, ㈜에이앤펩
기능성 효소	고기능 및 신기능 산업효소 개발 - 가축 사료용 효소 개발 - 식품첨가물 효소 개발 - 펄프, 세제, 섬유 제조를 위한 효소 개발	농산업소재, 생활소재, 동물건강소재	식품 산업, 의약품 산업, 바이오에너지 산업	화이자, DSM, Novozyme, Novo-Nordise, ㈜CJ, ㈜인섹트 바이오효소
천연 장기능 개선제	장 정착능력이 우수한 고 기능성 프로&프리바이오틱스 개발 - 고기능성 프로&프리 바이오틱스 확보 - 전통 발효 식품 유래 프로·프리 바이오틱스 확보 - 인체 적합성이 높은 맞춤형 프로&프리 바이오틱스 확보 - 유전체 기반 식이섬유 및 올리고당류 개발	식품소재	식품 산업, 의약품 산업	㈜오리온, ㈜CJ제일제당, ㈜한국야쿠르트, ㈜셀바이오텍, ㈜에이엠바이오
바이오 향료	글로벌 수준의 바이오 향료 개발 - 식·음료 및 향장품용 바이오 향료 개발 - 융복합용 및 의료용 바이오 향료 개발 - 바이오 공조향료 및 한방 향료 개발	생활소재, 식품소재	식품 산업, 향장품 산업, 섬유 산업, 생활용품 산업	(쥐서울향료, (쥐)아로마라인, (쥐엔자이텍, (쥐두한바이오텍
바이오 색소· 염료· 도료	친환경 기능성 색소·염료·도료 기술개발 - 천연 염료의 고생산성을 위한 작물자원 확보 - 천연 염료의 안정화 및 고수율 추출법 개발 - 천연 염색법 개발(섬유용, 제지용, 목재용)	생활소재, 식품소재	식품 산업 인테리어산업 섬유 산업, 향장품 산업, 제지 산업, 염모제 산업	BIOFA, AuroZ, SM, (쥐코오롱, ㈜삼전 황토, ㈜세노코, ㈜LG화학, ㈜헤펠 코리아, ㈜한국신화, ㈜이화산업
바이오 플라스틱	범용수지 대체 바이오 플라스틱 소재 개발 - 생분해(95% 이상) 및 재생가능한 바이오플라스틱 개발 - 식품 포장재용 바이오플라스틱 개발	농산업소재, 생활소재	포장재 산업 전자 산업, 플라스틱 제조 산업	PolyOne, 네이쳐웍스, Dow, Cereplast Inc., 노바몽
바이오 섬유	식물생리활용 융복합 섬유소재와 생화학적 공 정을 통한 생분해성 그린섬유소재를 개발 - 식물 생리활성물질 활용 융복합 섬유 확보 - 조직재생용 섬유 확보 - 셀룰로오스 기반 용융방사용 그린섬유 확보 - 동식물 단백질/바이오매스 기반의 섬유 확보	생활소재, 농산업소재	섬유 산업, 한지 산업	듀폰, 바스프, 렌징, ㈜한일과학산업, ㈜엔바이오, ㈜대농, ㈜효성

1 천연 방부제

- 소재의 정의
 - 식품, 화장품 등의 장기보존 및 유통기한 연장을 위해 사용되는 첨가물로서 미생물에 의한 부패 방지에 사용되는 생물유래 소재
- ㅇ 연구개발 필요성
 - 글로벌 유통 시장의 확대로 방부용 첨가물의 사용은 지속적으로 증가 할 것으로 예상, 인공방부제의 대체재 개발이 필요
 - 방부제의 사용용도에 따른 특성화된 스크리닝 시스템 개발 필요
- 산업동향 및 기술수준
 - (동향) 식품 방부제 유럽 시장규모 9,300만 달러('04), 미국은 3억 달러, 인도는 4,000만 달러('08)
 - 천연 방부제 시장은 전체 방부제 시장의 10%에 해당됨
 - (기술수준) 천연물 라이브러리 구축 수준은 선진국과 비슷한 수준이나 보관 및 유지의 질적 가치는 50% 수준
- ㅇ 연구개발 목표 및 관련 연구 내용

	총괄연구			핵심 연구분야
	미생물 기반 천연 방부제 소	재 개발		라이브러리로부터 방부소재
	, , , , , , , , , , , , , , , , , , , ,		발굴 등 2 분여	
연구 내용	식물 기반 천연 방부제 소재	대 개발	식물 천연물로투	부터의 방부소재 개발 등 2 분야
한 기 네 등	생물학적 방부기술 개발		생물학적 방투	보기술 개발
	안전성 검증 연구		천연물 소재 병	낭부제 안정성 검증기술 개발
	천연 방부소재 기반 유도체	개발 및 대량	천연 방부소기	재 기반 유도체 라이브러리
	생산기술 연구		개발 등2 분이	<u></u>
	Phase I	Pha	se II	Phase III
기스케비	사이히 기느 취정되다	-기존 천연물 방부제에 비해 생물화학적 특성이 증진된 소재 확보		- 방부 소재 및 천연물
기술개발	- 산업화 가능 천연방부 제 소재 타당성 검증			유도제 대량 생산
목표				시스템 확보
	및 R&BD 기획			- 소재의 상품화
		-처리환경,	소재별 방부	- 방부 소재 및 천연물
		효과 검정		유도제 대량 생산 시스
성과물	- 산업화 가능 소재 확보	- 친환경 제재		템 확보
		-천연물 유	도체의 물성	│
		최적화		

0 기대효과

- 인공방부제 시장 20% 대체 및 수출용 생물소재 연관 산업에 활용 (경제적인 파급효과 10배 이상 예상)

2 천연 항생제대체재

- 소재의 정의
 - 천연 항생제대체재(Antibiotics Alternatives)로서 가축의 건강을 향상시켜 질병발생 등에 대한 예방적 효과가 있는 소재
- ㅇ 연구개발 필요성
 - 항생제의 오남용에 따른 내성균 증가는 세계적으로 큰 문제가 되고 있으며, 이에 따라 기존 항생제를 대체할 수 있는 소재 개발이 시급
 - '11년 말부터 사료용 항생제 전면 금지로 항생제대체재 기술개발 절실
- 산업동향 및 기술수준
 - (동향) 세계 동물약품(항생제)시장 25조원, 국내시장 6,000억 원 규모('10)
 - (기술수준) 미생물과 약용식물 자원 탐색, 미생물 발효, 추출물 정제 및 대량생산 기술 수준은 선진국에 비해 초기단계
- ㅇ 연구개발 목표 및 관련 연구 내용

	총괄연구			핵심 연구분야
	세균질병 예방용 항생제 대체	체 소재개발	Phage 이용 소재 등 2 분야	
	항생제 내성균 방제용 천연	물 소재개발	미생물 유래	소재개발 등 2 분야
연구 내용	가축 면역증강용 천연물 소개	대개발	약용식물,농축 분야	산 부산물 유래 소재개발 2
한구 네용	질병 치료 및 성장촉진용 천 개발	연물소재	약용식물 유래 소재개발 2 분야	
	항곰팡이용 천연물 소재 개념	발	곤충 및 동물 유래 소재개발 등 2 분야	
	항염증용 천연물 소재 개발		미생물 유래 소재개발 등 2 분야	
	항바이러스 천연물 소재 개팀	발	약용식물 유래 소재개발 2 분야	
	Phase I	Phase	e II	Phase III
기술개발 목표	▮ 제새 소재 타당성 결수 ▮		다원 발효 및 술 확보	-대량생산 체재 구축 및 상용화 검증
성과물	- 산업화 가능 소재 확보	면역증강물	생물질과 }질 발효 및 따른 확보 정제 기술	- 생명자원을 활용한 대량생산 시스템 구축

0 기대효과

- 글로벌 사료첨가제용 항생제 사용의 50% 대체 및 국내 가축용 항생제 100% 대체
- 세계 항생제 시장 대체로 신산업 및 고용 창출 파급효과 발생

3 천연 5味 소재

- 소재의 정의
 - 단맛, 쓴맛, 짠맛, 신맛, 매운맛 등을 낼 수 있는 천연 유래 감미 및 조미 소재
- 연구개발 필요성
 - 천연감미·조미 소재의 가격 경쟁력을 높이기 위한 핵심원천 기술 확보와 물리, 생물, 화학적 특성 우수 소재의 개발 필요
- 산업동향 및 기술수준
 - (동향) 저칼로리 감미료 세계시장 규모는 15억 달러로 전망('15)
 - (기술수준) 세계 최초로 콩에서 발효 공법(천연 국균 발효 공법) 기술수준 확보
- ㅇ 연구개발 목표 및 관련 연구 내용

	총괄연구		핵심 연구분야	
	기능성 감미료 소재 기술 개발	및 대량 생산	항당뇨 감미료 제품화 연구 등 3 분야	
연구 내용	천연 조미료 소재 개발 및 디	내량 생산	천연 고감미료 소재 개발 등 3분야	
	바이오 기능성 당류 소재		바이오 기능성 당류 생산기술개발 등 3분야	
	Phase I	Phas	se II	Phase III
기술개발 목표	- 산업화 가능 천연 5味 소재 타당성 검증 및 R&BD 기획	- 대체 원료	파일럿 개발	- 양산 공장 현지화 - 저가 액당/저순도 제품 (Bulk Ingredient) 양산화 - 일반 식품 소재 상용화
성과물	- 산업화 가능 소재 확보	- 대체 원료 원가 절감 품 생산화	개발로 제조 및 양산 제	- Global Hit 제품 생산

ㅇ 기대효과

- '20년 합성조미료 세계시장의 30% 이상을 천연조미료로 대체
- '20년 고감미 세계시장의 5% 점유
- 대규모 장치 산업 중심의 감미료 사업화로 1조 원 이상의 매출과 함께 국내 고용 창출 및 해외 수출을 기대

4 기능성 아미노산

- ㅇ 소재의 정의
 - 미생물 발효공정을 통해 나온 고부가가치 소재로서 항균성, 영양성, 건강기능성 등을 강화시킨 단백질 소재
- ㅇ 연구개발 필요성
 - 단백질 소재의 기능을 향상시켜 부가가치를 높인 아미노산과 펩타이드의 활용 용도 및 수요 확대
 - 다양한 형태의 천연 펩타이드를 얻기 위해 미생물 및 효소를 부산물 자원에 접목하는 새로운 생물공학적 접근 필요
- 산업동향 및 기술수준
 - (동향) 세계 천연 아미노산 관련 시장규모는 446억 달러('08)이며, 이 중 사료용 아미노산 세계시장규모는 61억 달러('09)
 - (기술수준) 친환경 발효공법을 이용한 아미노산 대량생산 가능
- ㅇ 연구개발 목표 및 관련 연구 내용

	총괄연구		핵심 연구분야	
	사료용 아미노산 개발		사료첨가용 아미노산 소재 개발 1 분야	
	건강식품용 아미노산 개발		재조합 펩타(이드 개발 등 1 분야
연구 내용	의료용 아미노산 및 펩타이	드 개발	기능성 유사	펩타이드 개발 등 2 분야
	화장품용 아미노산 및 펩타	이드 개발	피부활성 펩티	타이드 개발 등 1 분야
	농생명 유래 기능성 펩타이	드 개발	부산자원 유래 펩타이드 등 2 분야	
	Phase I	Phase	e II	Phase III
기술개발 목표	- 산업화 가능 아미노산 - 고농도 고생산 및 펩타이드 소재 타당 및 친환경 발: 성 검증 및 R&BD 기획 - 정제수율 향상		효 공정 개발	- 산업화 대량생산 기술개발 - 생리활성 발효산물 스크리닝 - 정제공정 최적화 - 안전성 검증 및 독성 시험
성과물	- 발효 농도 및 - 신규 생합성 2 성과물 - 산업화 가능 소재 확보 - 발효 미생물을 물전환 시스템 - 안전성 및 효능		경로 디자인 을 적용한 생	-생리활성 검증을 위한 In Vitro 평가 시스템 -기능성 아미노산이 첨가된 다양한 형태의 제품화

0 기대효과

- 세계 아미노산과 펩타이드 소재 시장 10% 점유
- 아미노산과 펩타이드 활용 산업군의 고부가가치 소재 산업화

5 기능성 효소

- 소재의 정의
 - 고온, 고압 등 특수한 상황에서 산화환원, 가수분해, 이성 및 합성 반응을 촉진하는 산업용 효소
- ㅇ 연구개발 필요성
 - 응용 시장 확대로 전구물질의 선택적 활성을 높인 생촉매 개발 필요
 - 다양한 합성물질을 생산할 수 있는 생산 공정의 개발 필요
- 산업동향 및 기술수준
 - (동향) 세계 효소시장은 71억 달러('14), 미국은 25억 달러('13)에 이를 것으로 전망
 - (기술수준) 유전자 재조합 기술과 오믹스(Omics) 기술을 이용한 세포 대사 시스템 기술 확보
- ㅇ 연구개발 목표 및 관련 연구 내용

	총괄연구			핵심 연구분야	
	식품 첨가물 효소제재 개발		고기능 식품첨가 효소 개발 등 2 분야		
	섬유 제조용 효소제재 개발		고기능 cellulase 효소 개발 등 2 분야		
연구 내용	의약용 효소제재 개발		기능성 키랄아미노산 발효 생산 기술개발 등 2 분야		
	가축 사료용 효소제재 개발		고기능성 phytase 효소 개발 등 1분야		
	정밀화학용 효소제재개발		고기능성 Biocatalysts용 효소 개발 등 2분야		
	Phase I	Phase II		Phase III	
기술개발 목표	- 고기능 신 - 산업화 가능 기능성 효소 및 단백질 소재 타당성 검증 및 분석을 통형 R&BD 기획 단백질의 특		라이브러리 한 효소 특성예측 및	- 합성 효소 및 천연 효소를 Molecular evolution을 이용한 기술 확보	
성과물	- 산업화 가능 소재 확보	-다양한 신고 효소 단백질 라이브러리		- 다양한 분자생물학적 기술 이용한 초고기능 효소 단백질 개발	

ㅇ 기대효과

- 기존 효소시장의 10% 대체로 세계 시장 2억 달러 달성
- 농업, 환경, 자원, 보건 등 여러 산업분야 적용을 통한 사회·경제적 이익 창출

6 천연 장기능 개선제

- 소재의 정의
 - 장내 미생물 균종 개선을 통해 사람, 동물에 유익한 균주(프로바이오틱스)와 이를 증식시키는 인자(프리바이오틱스)
- ㅇ 연구개발 필요성
 - 다이어트, 건강기능 식품 수요 증가로 프리·프로바이오틱스 시장이 성 장함에 따라 이에 대응하는 기술개발 필요
- 산업동향 및 기술수준
 - (동향) 유산균 세계시장 규모는 250조 원('10년)
 - (기술수준) 우리나라 기술력은 선진국 대비 '90년 20%, '10년 40%, '20 년 65% 수준으로 성장
- ㅇ 연구개발 목표 및 관련 연구 내용

	총괄연구		핵심 연구분야	
	인체 유래 프로바이오틱스 등	균주 개발	프로바이오틱스 핵심 균주 개발 등 3분야	
	전통 발효 식품 유래 프로비 소재 개발	이오틱스	유산균 유래 신물질 개발 등 3분야	
연구 내용	인체 적합성이 높은 맞춤형 프리바이오틱스 개발		기능성 프리바이오틱스 소재 개발 등 3분야	
	Glycomics 기반 신규 올리고	당 소재 개발	모유 올리고당 개발 등 3분야	
	식이섬유 소재 개발		고 기능성 식이섬유 개발 등 2분야	
	프로바이오틱스. 프리바이오 연구	틱스 제품화	기능성 식품용	용 소재 개발 등 3분야
	Phase I Ph		se II	Phase III
기술개발 목표	- 산업화 가능천연 장기 는 개선제 소재 타당성 검증 및 R&BD 기획	- 프로바이오 프리바이오 기술 확보	•	- 대량생산 시스템 확보 - 프로·프리바이오틱스 임상 평가 및 제품 제형 개발
성과물	- 산업화 가능 소재 확보	-생산 기술	최적화	- 5톤 배양기, GMP (의약품생산관리기준) 생산 기반 구축

ㅇ 기대성과

- 농생명유래 분리균주들의 안정성 검증으로 세계 시장점유 가능
- 과민성장 증상이 50% 이상 저감화되는 기술 확보
- 세계 수출 1,000억 원/년 달성을 위한 기반 기술 확보('21)

7 바이오 향료

ㅇ 소재의 정의

- 동·식물성 천연 향료성분과 생물전환기술공정에 의해 생산되는 바이오 향료 성분을 포함하는 소재

ㅇ 연구개발 필요성

- 국내 향료 소재시장의 수입의존도가 높고 유기농 향장품의 수요 증가에 따른 천연 향료 소재 개발 필요

○ 산업동향 및 기술수준

- (동향) 세계 향료시장의 180억 달러 규모('06), 천연향료 시장은 전체의 13% 수준으로 점차 점유율 확대
- (기술수준) 국내의 향료분석 및 추출기술과 관련된 DB 구축은 매우 열악하며, 대량 생산 기반 구축과 제품화를 위한 생산 기반은 전무
- ㅇ 연구개발 목표 및 관련 연구 내용

	총괄연구			핵심 연구분야
	한의학적 한방 향료 개발		바이오 한방향료 개발 등 2분야	
	융복합용 바이오 향료 개	발	융복합성 향료	로개발 등 2분야
	바이오 공조향료개발		기능성 공간 친	전연 방향향료 개발 등 2분야
연구 내용	소취, 탈취제 바이오 향료	. 개발	바이오 소취 5	및 탈취용 향료개발 등 1분야
	향장품용 바이오 향료 개	발	피부 적용 기	능성 향료개발 등 2분야
	식·음료 바이오 향료 개빌	<u> </u>	고부가성 Bio-Flavor 개발 등 1분야	
	고품질·고순도 의료용 바여 개발	이오 향료	신경성질환 ㅊ	료용 향료개발 등 2 분야
	Phase I	Pha	se II	Phase III
기술개발 목표	- 산업화 가능 바이오 향 료 소재 타당성 검증 및 R&BD 기획	- 천연향 원료 원하는 형태 료 제품 개	배의 천연 향	-신규 추출 공정 및 미생물 발효 공법을 이용한 천연향 제품을 세계 최고 수준의 품질로 업그레이드
성과물	- 신업화 기능 소재 확보	- 천연향을 C 한 천연 향	나양하게 조합 문	- 천연 향료가 첨가된 다 양한 형태의 제품화

ㅇ 기대효과

- 기존 천연향료 세계시장의 10% 대체로 1조 원 이상 확보
- 수입의존도가 높은 국내 향료를 국내기술의 바이오 고품질 향료로 100% 대체

8 바이오 색소·염료·도료

- ㅇ 소재의 정의
 - 바이오 색소·염료란 식품 및 화장품 등 다양한 분야에서 염색이 가능한 천연 또는 생물공정전환기술을 통해 만들어진 소재
 - 바이오 도료란 인체에 무해한 촉매와 산화제를 첨가해 만든 소재
- ㅇ 연구개발 필요성
 - 소비자의 친환경제품 선호에 따라 천연 염료 및 도료 수요의 증가로 생산성을 높이기 위한 연구 개발이 필요
- 산업동향 및 기술수준
 - (동향) 세계 유기색소 시장은 162억 달러('13), 천연 염료 세계 시장 규모는 450억 달러('10), 연평균 3.9% 규모로 성장
 - (기술수준) 염료 식물의 재배기술과 형질전화 기술 수준은 선진국과 비슷
 - · 천연염료 소재의 대량생산시스템은 보유하고 있으나 안전화 및 견뢰도 확보 기술은 초기단계
- ㅇ 연구개발 목표 및 관련 연구 내용

	총괄연구			핵심 연구분야	
	식품·도료용 천연색소 개발		천연색소 자원 활용 안료 개발 등 2 분야		
	Natural Tannin 이용 천연 염	색법 개발	Natural Tann	in의 도료화 공정 등 1분야	
연구 내용	DTP용 천연잉크 개발		천연잉크용	천연잉크용 천연염재 확보 1분야	
	천연염재 추출물을 이용한 힘 제품개발	^텔 스케어	항산화 기능 소재개발 3분야		
	천연 방부소재 기반 유도체 대량생산기술 연구	개발 및	색상 다양화 기술 개발 2분야		
	Phase I	Phase	e II	Phase III	
기술개발 목표	- 산업화 가능 바이오 색소· 염료·도료 소재 타당성 검 증 및 R&BD 기획		. : —	-대량시스템 기술 확립	
성과물	- 처리환경, 소재 - 산업화 가능 소재 확보 - 친환경 제재화 - 천연물 유도체의		기술 확보	-대량생산 기술 확보	

ㅇ 기대효과

- 기존 국내 천연 염료 시장의 수입대체 연 3,000억 원 창출 가능
- 섬유, 각종 인테리어 제품에 적용되는 신수요 창출로 세계시장 선점

9 바이오 플라스틱

- ㅇ 소재의 정의
 - 식물유래자원을 원료로 하여 고분자로 합성된 생분해성 플라스틱소재\
- ㅇ 연구개발 필요성
 - 교토의정서 발효에 따라 바이오 플라스틱 시장 경쟁이 심화되면서 생분해성 또는 생물자원유래 플라스틱 기술개발 필요
- 산업동향 및 기술수준
 - (동향) 세계 시장규모는 21억 달러('07)이며, 수요의 약 75%가 포장 산업에서 발생
 - 폴리에스터 기반 제품 시장은 매년 25% 성장할 것으로 전망
 - (기술수준) 친환경 바이오 플라스틱 소재 개발 기술수준 미흡
 - 일본 기업이 특허출원의 90% 이상 점유
 - · Reacting Blending 기법으로 제조시 생분해도 82% 수준 확보
- ㅇ 연구개발 목표 및 관련 연구 내용

	총괄연구			핵심 연구분야	
	농생명 유래 바이오에틸렌 :	소재 개발	당화 플랫폼 개발 등 2분야		
	헤미셀룰로오스 유래 푸르푸	·랄 소재 개발	푸르푸랄 유도	E체 합성 기술 등 2분야	
연구 내용	식물성 오일 기반 폴리우레틴	한 소재 개발	폴리올 생산용	폴리올 생산용 소재 개발 등 2분야	
합 1 세명	바이오매스 유래 폴리카프로 개발	락톤 소재	폴리카프로락톤 소재 개발 등 1분야		
	바이오매스 유래 폴리아미드 소재 개발		폴리아미드 소재 개발 등1분야		
	edible(먹을 수 있는) 플라스! 개발	틱(코팅) 소재	단백질, 다당년 개발 등 2분0	류 활용 식용 플라스틱 소재 냐	
	Phase I	Pha	se II	Phase III	
기술개발 목표	- 산업화 가능 바이오 플 라스틱 소재 타당성 검 증 및 R&BD 기획	-유용 생명 발효 및 추취	자원 당화· 출 기술 확보	-생산공정 플랫폼 구축 및 상용화 기술개발	
성과물	- 산업화 가능 소재 확보	- 당화·발효 - 유용소재 전 최적화	. —	- 바이오 플라스틱 소재 상용화 공정 확보	

○ 기대효과

- 기존 플라스틱 대체 친환경 소재 개발로 환경오염 저감 및 수입대체 효과 달성
 - 기존 범용수지를 생분해성 곡물수지로 20% 대체

10 바이오 섬유

- ㅇ 소재의 정의
 - 옥수수, 우유 등 바이오매스 유래 섬유소재 및 생리활성 기능을 지닌 섬유
- 연구개발 필요성
 - 석유자원 고갈과 환경문제에 따른 바이오섬유 기술개발 필요
 - 국가적 투자 및 지원을 통한 기업 리스크 저감 필요
- 산업동향 및 기술수준
 - (동향) 세계 바이오섬유산업 시장은 100억 달러 규모로 성장, 연평균 6~12% 이상 성장 전망('20)
 - (기술수준) 일본이 선도하고 있으며 우리나라는 선진국 수준의 50% 미만
- 연구개발 목표 및 관련 연구 내용

	총괄연구		핵심 연구분야						
	셀룰로오스계 용융방사용 바이	기오섬유 개발	섬유용 셀룰로오스계 소재 개발 등 1분야						
	동식물 단백질 기반 재생섬	유소재 개발	재생 실크 섬유소재 제조 등 3분야						
연구 내용	바이오매스 이용 고분자 합 기술 개발	성 및 섬유화	단량체 이용 고분자 합성 및 섬유화 등 2분야						
	유 무기 융복합 고강도 고니 섬유 개발	내열성 바이오	천연/합성 고분자 블렌드 섬유개발 등 2분야						
	기능성 작물 및 약용식물 위물질 융복합 헬스케어·테라피션		융복합 입자형 나노 가공제 개발 등 4분야						
	Phase I	Pha	se II	Phase III					
기술개발 목표	- 산업화 가능 바이오 섬 유 소재 타당성 검증 및 R&BD 기획		생산 및 합성 및 기능 개선	- 바이오 섬유 소재의 상용화					
성과물	- 산업화 가능 소재 확보	- 유용물질의 제, 추출 기 - 고분자 유민 술 확보 - 성능개선 기	술 확보 E체 합성 기	- 바이오 섬유 소재의 제 품화 및 양산화 - 대량 생산 시스템 구축					

ㅇ 기대효과

- 바이오매스 기반 화학소재 시장 폭발적 성장예상, 신산업 창출 및 고용 창출
- 유관 기술의 의약학, 화학, 기타 소재 산업 분야로의 확대

3.3 사업운영방안

□ 거버넌스 구조

- 농생명소재산업화기술개발사업은 목표 달성을 위해서 철저하게 산업화 지향적인 R&D 관리구조를 설계하며, 산업화 기여도에 따라 평가하는 체제로 운영함
- 농생명소재 산업별 기술개발의 기획, 평가, 관리 등을 상시 책임관리하는 PO(Project Operator)기능을 도입하고, 10대 소재별 1명의 담당자를 구성하여 추진함
 - PO은 사업 목표에 부합하는 소재기술을 기획하고 이를 상시점검하며, 개발 후 상용화까지 책임관리함으로써 농생명소재산업화 제고할 수 있음

[그림 2] 농생명소재산업화기술개발사업 거버넌스 구조

□ 프로젝트 추진 구조

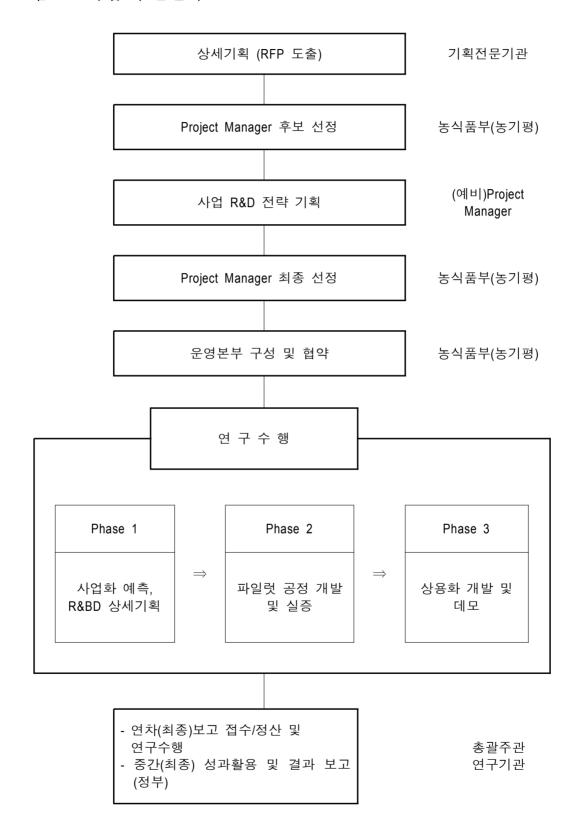
- 사업기간(1개 프로젝트): 6년(1년 + 3년 + 2년)
 - 단계별 프로젝트 선정을 통하여 글로벌 시장 진입 가능성이 높은 프로젝트에 집중 투자

- 기술 개발 성공률 및 사업화 가능성에 대한 엄격한 평가로 단계별로 글로벌 농생명소재를 선도할 수 있는 프로젝트를 선택적으로 지원함
 - Phase I은 사업 출범 초년인 2013년에 소재별 10개 프로젝트를 공모하며, 이후 4년간 5개 프로젝트를 신규로 공모함
 - Phase II에서는 Phase I에서 타당성 검증 되고 연구 개발 가능성이 높은 60%의 과제만 선정하여 사업 추진
 - Phase III는 Phase II에서 사업화 가능성이 높은 66%의 과제만 선별하여 사업을 추진함

□ 사업 추진 전략

- [전략1] 기업주도의 전략적 투자(선택과 집중)
 - 민간기업의 연구 참여 활성화 및 전략적인 유도를 통해 조기 사업화 가 가능하도록 가교연구 강화를 위한 최적 기술개발 사업화 파트너를 활용한 농생명소재 개발 추진
 - 연구목표는 국제적 수준에 맞춰 설정하되 연구는 자율적으로 수행
- [전략2] 개방형 혁신 전략 추진
 - 기존 연구개발사업(생명자원분야 프론티어사업, 바이오그린21사업 등)의 성과와 인프라를 활용하고, 기술시드 및 비즈니스 플랫폼을 활용하여 초기성장단계의 농생명소재 시장을 선점
 - 상시적인 지식기반 기술 사업화 시스템을 구축하여 새로운 기술 및 시장의 출현에 빠르게 대응
 - 국내외 농생명소재 분야의 아이디어를 수렴하고 최적의 최첨단 인프 라를 통하여 대량생산이 가능한 소재 산업화로 추진

○ [전략3] R&BD형 사업 추진


- 기술개발 기획 단계부터 비즈니스 개발을 목표로 사전기획 강화
- 모든 기술개발 과제에 대한 비즈니스 모델 확립과 사업성 예측을 수행하여 기술사업화 전략을 통합적으로 추진

□ 사업주체간 역할분담

<표 2> 사업 주체별 역할 및 기능

주 체	역할 및 기능
농림수산식품부	- 최상위 의사결정기관 - 사업의 추진과 관련된 정책적 판단 및 의사결정 - 사업 시행계획 수립 - 사업 투자 운선순위 결정 - 농생명소재 산업화 기반 기술 확립(업체 참여, 상용화) 중점추진
운영위원회	- 구성: 농림수산식품부 담당국장 + 민간전문가 ·사업 및 정책 목표에 부합하는 운영 계획, 통합관리방안 등 협의 ·예산 운용계획 수립 등 총괄 계획 수립 및 조정 역할 수행 ·세부추진계획 적절성 점검
농림수산식품 기술기획평가원 (농생명소재산업화 기술개발사업)	
프로젝트리더	- 세부연구프로젝트 수행

<참고> 사업 추진절차

3.4 소요예산 및 조달 방안

□ 투자계획(안)

- 총사업비: 5,982억 원/10년(정부 4,636.5억 원, 민간 1,345.5억 원)
- 1개 프로젝트: 27~52억 원/6년 (소재별 차등 지원)
 - 산업화 단계별 정부와 민간자금 대응 투자 비율 차등 지원
 - · (정부:민간) 1단계 100:0 → 2단계 75:25 → 3단계 75:25

<표 3> 연도별 투자 예산 계획

(단위: 억 원)

연도		'13	'14	'15	'16	'17	'18	'19	'20	'21	'22	총 합
소재별 누적 프로젝트		10	11	14	17	18	15	10	7	4	2	
1단계	착수	10	5	5	5	5						30
	누적	10	5	5	5	5						
2단계	착수		6	3	3	3	3					18
	누적		6	9	12	9	9	6	3	0	0	
3단계	착수				0	4	2	2	2	2	0	12
	누적				0	4	6	4	4	4	2	
총예산		200	514	721	928	997	1,035	690	483	276	138	5,982
	정부	200	410.5	565.8	721	772.8	776.2	517.5	362.2	207	103.5	4,636.5
	민간	0	103.5	155.2	207	224.2	258.8	172.5	120.8	69	34.5	1,345.5

○ 소요예산 추정근거

- 사업단별 소재, 현재 기술수준 및 연구내용 등 개별 특성을 반영하여 투자 비용을 상이하게 산출
- 소재개발 기업의 설문 결과, 1개 아이템 개발에 평균 5~10억 원/년 이 소 요되는 것으로 조사
- 각 소재별 평균 12개의 아이템 개발을 목표로 설정
- 1단계 타당성 검증 기간은 정부 출연으로 프로젝트를 진행하고, 이후 단계별 추진내용에 따라 민간의 대응 투자비를 결정

- 1단계(1년차): R&BD 상세기획 & 타당성 검증에 필요한 연구비로 정부: 민간 비율을 100:0으로 산정
- 2단계(2~4년차): 실증 연구 및 기업주도 파일럿 공정 개발에 필요한 연구비로 정부:민간 비율을 75:25으로 산정
- 3단계(5~6년차): 기업주도의 상용화 개발에 필요한 연구비로 정부:민간 비율을 75:25으로 산정

※ 각 소재 사업단의 단계별 추진내용은 전문가의 수요요구서를 검토하여 설정

<표 4> 소재 사업단 별 소요 예산 근거

(단위: 억 원)

											(단위	: 억 원)
소재		2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	계
천연	방부제	20	70	100	130	140	150	100	70	40	20	840
	정부	20	55	77.5	100	107.5	112.5	75	52.5	30	15	645
	민간	0	15	22.5	30	32.5	37.5	25	17.5	10	5	195
	연 대체재	20	52	73	94	101	105	70	49	28	14	606
	정부	20	41.5	57.2	73	78.2	78.8	52.5	36.8	21	10.5	469.5
	민간	0	10.5	15.8	21	22.8	26.2	17.5	12.2	7	3.5	136.5
천연 5	味 소재	20	46	64	82	88	90	60	42	24	12	528
	정부	20	37	50.5	64	68.5	67.5	45	31.5	18	9	411
	민간	0	9	13.5	18	19.5	22.5	15	10.5	6	3	117
	등성 노산	20	58	82	106	114	120	80	56	32	16	684
	정부	20	46	64	82	88	90	60	42	24	12	528
	민간	0	12	18	24	26	30	20	14	8	4	156
기능성	성 효소	20	52	73	94	101	105	70	49	28	14	606
	정부	20	41.5	57.2	73	78.2	78.8	52.5	36.8	21	10.5	469.5
	민간	0	10.5	15.8	21	22.8	26.2	17.5	12.2	7	3.5	136.5
장기능	개선제	20	58	82	106	114	120	80	56	32	16	684
	정부	20	46	64	82	88	90	60	42	24	12	528
	민간	0	12	18	24	26	30	20	14	8	4	156
바이오		20	40	55	70	75	75	50	35	20	10	450
	정부	20	32.5	43.8	55	58.8	56.2	37.5	26.2	15	7.5	352.5
	민간	0	7.5	11.2	15	16.2	18.8	12.5	8.8	5	2.5	97.5
<u>바이오</u> 염료·	도료	20	40	55	70	75	75	50	35	20	10	450
	정부	20	32.5	43.8	55	58.8	56.2	37.5	26.2	15	7.5	352.5
	민간	0	7.5	11.2	15	16.2	18.8	12.5	8.8	5	2.5	97.5
바C 플라	이오 <u>스틱</u>	20	52	73	94	101	105	70	49	28	14	606
	정부	20	41.5	57.2	73	78.2	78.8	52.5	36.8	21	10.5	469.5
	민간	0	10.5	15.8	21	22.8	26.2	17.5	12.2	7	3.5	136.5
바이오	2 섬유	20	46	64	82	88	90	60	42	24	12	528
	정부	20	37	50.5	64	68.5	67.5	45	31.5	18	9	411
	민간	0	9	13.5	18	19.5	22.5	15	10.5	6	3	117
	부	200	410.5	565.8	721	772.8	776.2	517.5	362.2	207	103.5	4,636.5
민	간	0	103.5	155.2	207	224.2	258.8	172.5	120.8	69	34.5	1,345.5
7	4	200	514	721	928	997	1,035	690	483	276	138	5,982

4. 타당성 분석

4.1 기술적 타당성

□ 기존사업과의 연계성

- 기존 생명자원 관련 사업은 각 부처별 성격에 따라 추진되었으나 본 사업은 부처간 연계를 통해 농업분야 생명자원 활용 및 연계가 가능한 모든 사업을 도출하여 글로벌 생명산업을 육성
- 농진청의 바이오그린21사업의 기존 우수 성과 중 중점지원소재 아이템 기준에 부합하는 성과를 연계하여 사업화 추진

□ 기존사업과의 차별성

- 글로벌 시장 지향의 농생명소재 개발을 통한 소재 산업 창출
 - 글로벌 시장 선점이 가능한 농생명소재의 발굴 및 개발로 농생명소재 산업 창출을 추진하는 사업임
 - 기존 생명자원 R&D 사업은 일부 산업분야의 제품개발에만 한정됨
- 최초의 부처 간 성과 연계 산업화 사업(이어달리기사업)
 - 부처 간 공조모델로 추진하여 R&BD의 개념에서 연계 개념을 중시한 R&CD 전략으로 확장
 - 국가 R&D 사업의 우수연구 성과의 산업화 연계
- 우수성과 및 인프라를 활용한 현장애로·산업화·보급 중심의 단기 전략 과 신시장·신산업 창출 및 원천기술 확보 등을 위한 장기 전략 병행

4.2 정책적 타당성

□ 사업추진의 시급성

- 국가적 당면과제 중 식량 안보, 기후변화, 식품안전, 에너지 고갈, 국제 환경 규제(REACH) 강화 등에 따라 10대 생명자원소재의 기술개발을 통 하여 이러한 당면과제들을 신속히 해결하기 위한 기반을 수립 필요
 - (구제역, AI 대책 & 항생제 사료 사용 금지 대책 시급) 바이러스성 인수공통질병 대책 수립과 항생제 대체재 개발이 시급
 - ※ 2011년 구제역 파동으로 국내 사육 소, 돼지의 25%인 350만 마리가 살처분 되었고, 피해액이 약 2조 8천 억에 이름
 - (식품 안전 확보) 국민들은 점점 식품안전을 위협받고 있다고 인식하고 있고, 식중독 사고의 규모와 피해도 커지고 있고, 이에 대한 대책이 지속 추진 필요
 - (기능성 식품산업 소재 개발 시급) 세계적으로 비만 및 당뇨 인구의 증가로 기능성 식품소재 개발은 세계적으로 고기능성 및 신기능성 관련수요가 증가함에 따라 시급히 수행해야 함
 - (REACH 등 국제 환경규제 대응 시급) 선진국의 강화된 신규 화학물질 관리 규제에 대응하기 위하여 새로운 친환경 생명자원소재 개발 시급
- 차세대 국가 성장동력 확보를 위한 '생명자원 선점'의 글로벌 경쟁이 심화 되고 있고, 생명자원 활용 사업의 최우선적 추진이 필요함
 - 다양한 분야의 핵심 소재 및 정보 제공으로 고부가가치 창출을 위해 시장을 먼저 선점하는 것이 유리함
 - 세계는 합성화학산업기반 경제에서 생명자원산업(biomass)기반 경제로 의 빠른 진화를 위한 무한 경쟁 전개
 - · 차세대 성장 동력으로서 향후 10년간 집중적인 투자를 통해 국가적 역량 집결 필요
 - ※ 농생명자원 중 실물자원의 보고인 생명자원의 세계시장 규모는 8천 억 달러 ('03)에서 2조 5천 억 달러('10)로 추정

□ 정부지원의 필요성

- 농생명소재 분야는 국가차원에서 지원·육성해야 될 대상으로 지정하고 있음
 - 「이명박 정부의 과학기술기본계획('08-'12)」에서 40대 중점육성후보기술로 '생물소재 및 공정기술'을 선정하고, 정부의 지원 및 육성이 필요한 분야로 규정
 - 농생명소재 분야는 「농림수산식품과학기술육성종합계획(2010-2014)」 및 「농림수산식품·농산어촌 비전 2020」에서 중점 지원이 필요한 분 야로 선정하였으며, 이에 따라 국가적으로 중점 육성해야할 분야임
- 농생명소재 산업의 민간 역량이 취약하여 산·학·연 공통기반 사업에 정부 지원이 절대적으로 필요
 - 글로벌 농생명소재 개발을 위한 종합적 역량을 보유한 기업이 부족하여 신소재 개발이 어려움
 - 생명자원소재 시장은 글로벌 역량을 갖춘 소수 기업이 독점하고 있음
 - 생명자원소재 산업은 산업화 진입 초기의 대규모 R&D 투자를 동반하는 고위험도 사업으로 정부 지원 필요
- 범부처 차원에서 마련한 '국가 생명자원확보관리 활용 마스터 플랜'에서 '생명자원의 산업적 활용체계 강화'의 필요성이 제기되면서 정부의 적 극적인 지원과 개입으로 생명자원소재산업화를 가속화 시킬 수 있음
 - 선진국은 농생명소재의 가치를 일찍부터 인식하여 제품의 원천이 되는 농생명소재 개발 프로젝트를 국가주도로 진행하고 있으나, 우리나라는 농생명소재을 활용한 일부 제품개발에만 초점을 맞추고 있음